Geometric Structures of Information



de

Éditeur :

Springer


Paru le : 2018-11-19



eBook Téléchargement , DRM LCP 🛈 DRM Adobe 🛈
Lecture en ligne (streaming)
147,69

Téléchargement immédiat
Dès validation de votre commande
Ajouter à ma liste d'envies
Image Louise Reader présentation

Louise Reader

Lisez ce titre sur l'application Louise Reader.

Description

This book focuses on information geometry manifolds of structured data/information and their advanced applications featuring new and fruitful interactions between several branches of science: information science, mathematics and physics. It addresses interrelations between different mathematical domains like shape spaces, probability/optimization & algorithms on manifolds, relational and discrete metric spaces, computational and Hessian information geometry, algebraic/infinite dimensional/Banach information manifolds, divergence geometry, tensor-valued morphology, optimal transport theory, manifold & topology learning, and applications like geometries of audio-processing, inverse problems and signal processing.
The book collects the most important contributions to the conference GSI’2017 – Geometric Science of Information.
Pages
392 pages
Collection
n.c
Parution
2018-11-19
Marque
Springer
EAN papier
9783030025199
EAN PDF
9783030025205

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
39
Taille du fichier
45957 Ko
Prix
147,69 €
EAN EPUB
9783030025205

Informations sur l'ebook
Nombre pages copiables
3
Nombre pages imprimables
39
Taille du fichier
46356 Ko
Prix
147,69 €

Frank Nielsen is Professor at the Laboratoire d'informatique de l'École polytechnique, Paris, France. His research aims at understanding the nature and structure of information and randomness in data, and exploiting algorithmically this knowledge in innovative imaging applications. For that purpose, he coined the field of computational information geometry (computational differential geometry) to extract information as regular structures whilst taking into account variability in datasets by grounding them in geometric spaces. Geometry beyond Euclidean spaces has a long history of revolutionizing the way we perceived reality. Curved spacetime geometry, sustained relativity theory and fractal geometry unveiled the scale-free properties of Nature. In the digital world, geometry is data-driven and allows intrinsic data analytics by capturing the very essence of data through invariance principles without being biased by such or such particular data representation.

Suggestions personnalisées